The role of C-terminus carbohydrate-binding domain of Vibrio cholerae haemolysin/cytolysin in the conversion of the pre-pore β-barrel oligomer to a functional diffusion channel

نویسندگان

  • Budhaditya Mazumdar
  • Sreerupa Ganguly
  • Amar N. Ghosh
  • Kalyan K. Banerjee
چکیده

BACKGROUND & OBJECTIVES Vibrio cholerae cytolysin/hemolysin (VCC) is a 65 kDa pore-forming toxin (PFT) secreted by O1 El Tor and non-O1 strains. The purified toxin, which contains two C-terminus carbohydrate-binding domains in addition to the cytolytic domain at the core, causes lysis of a wide spectrum of eukaryotic cells at picomolar concentrations, apoptogenesis of intestinal and immune cells and accumulation of fluid in rabbit ligated ileal loop. Therefore, it may potentially complement the action of cholera toxin (CT) in diarrheagenic strains that do not produce CT. We showed earlier that β1-galactosyl-terminated glycoconjugates are strong inhibitors of its pore-forming activity, though carbohydrates are not functional receptors of VCC. Here, we investigate how the 15 kDa C-terminus β-prism lectin domain contributed to pore formation in erthrocytes. METHODS VCC was isolated from the culture supernatant of late log phase grown bacteria and purified to homogeneity by chromatography. The 50 kDa truncated variant was generated by restricted proteolysis. Liposome was prepared by sonication of a suspension of phospholipids and calceine release assay was done by spectrofluorometric monitoring of the released dye trapped in liposome. Formation of β-barrel oligomers in erythrocyte stroma was monitored by scanning electron microscopy. RESULTS Proteolytic truncation of the C-terminus β-prism lectin domain decreased hemolytic activity of the toxin by ~800-fold without causing a significant change in pore-forming activity toward synthetic lipid vesicles devoid of incorporated glycoproteins/glycolipids. Truncation at the C-terminus did not impair membrane-binding or assembly to the oligomeric pore. INTERPRETATION & CONCLUSIONS Our data indicated that the C-terminus domain played a critical role in translocation of the pre-pore oligomeric assembly from the cell surface or lipid-water interface to the hydrocarbon core of the membrane bilayer, signaling the formation of functional diffusion channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repair of a Bacterial Small β-Barrel Toxin Pore Depends on Channel Width

Membrane repair emerges as an innate defense protecting target cells against bacterial pore-forming toxins. Here, we report the first paradigm of Ca2+-dependent repair following attack by a small β-pore-forming toxin, namely, plasmid-encoded phobalysin of Photobacterium damselae subsp. damselae In striking contrast, Vibrio cholerae cytolysin, the closest ortholog of phobalysin, subverted repair...

متن کامل

Vibrio cholerae hemolysin: The β-trefoil domain is required for folding to the native conformation

Vibrio cholerae cytolysin/hemolysin (VCC) is a 65 kDa β-pore-forming toxin causing lysis and death of eukaryotic cells. Apart from the core cytolysin domain, VCC has two lectin domains with β-trefoil and β-prism folds. The β-prism domain binds to cell surface carbohydrate receptors; the role of the β-trefoil domain is unknown. Here, we show that the pro-VCC mutant without the β-trefoil domain f...

متن کامل

Structural basis of mammalian glycan targeting by Vibrio cholerae cytolysin and biofilm proteins

Vibrio cholerae is an aquatic gram-negative microbe responsible for cholera, a pandemic disease causing life-threatening diarrheal outbreaks in populations with limited access to health care. Like most pathogenic bacteria, V. cholerae secretes virulence factors to assist colonization of human hosts, several of which bind carbohydrate receptors found on cell-surfaces. Understanding how pathogeni...

متن کامل

Hemolytic lectin CEL-III heptamerizes via a large structural transition from α-helices to a β-barrel during the transmembrane pore formation process.

CEL-III is a hemolytic lectin isolated from the sea cucumber Cucumaria echinata. This lectin is composed of two carbohydrate-binding domains (domains 1 and 2) and one oligomerization domain (domain 3). After binding to the cell surface carbohydrate chains through domains 1 and 2, domain 3 self-associates to form transmembrane pores, leading to cell lysis or death, which resembles other pore-for...

متن کامل

Growth Inhibitory Effect of Lactocare on Vibrio cholerae

Background and Objective: Acute microbial diarrheal diseases are the major public health problems in the developing countries. People affected by diarrheal diseases have the lowest financial resources and poorest hygienic facilities. Children under five, primarily in Asian and African countries, are mostly the subjects affected by microbial diseases transmitted through water.<b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 133  شماره 

صفحات  -

تاریخ انتشار 2011